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Model of commensurate harmonic oscillators with SU(2) coupling interactions:
Analogous observation in laser transverse modes
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We theoretically explore the eigenstates of a coupled p:q commensurate harmonic oscillator with SU(2)
coupling interactions under the canonical transformation. The spatial patterns of the high-order eigenstates are
found to be markedly localized on Lissajous figures from single to multiple periodic orbits. Controlling the
pumping size in large-Fresnel-number degenerate cavities, we have experimentally observed the laser transverse
modes that display the wave patterns to be analogous to the derived eigenstates.
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I. INTRODUCTION

For the past few decades, models developed from quantum
mechanics have been employed progressively to explore
the emergent phenomena in numerous different branches
of physics because they can be interpreted with the same
theoretical forms as quantum formulas [1–5]. One of the most
profound similarities is that the electromagnetic wave equation
in paraxial approximation is isomorphous to the Schrödinger
equation [6–9]. Consequently, the electromagnetic radiation
modes in the optical resonator or waveguide are analogs
of the wave functions of a quantum system [10–12]. The
tight connection between the paraxial beam propagation and
quantum mechanics has been extensively exploited to study
wave chaos phenomena [11,13,14], disorder induced wave
localization [15], semiclassical physics [16,17], and transient
dynamics of quantum states [18–20].

The coupled harmonic oscillators (HOs) have been em-
ployed successfully to explore the hydrogen atom problem
[21], charged particles in external field [22,23], states of
deformed nucleus in the Nilson model [24], shell effects in
nuclei and metallic clusters [25], and orbital magnetism in
quantum dots [26]. More recently, the isotropic HOs with
SU(2) coupling interactions have been used to investigate
the generation and evolution of quantum vortex states [27]
and the transformation geometry between Lissajous and
trochoidal orbits [28]. It has been shown [29,30] that the
commensurate HOs can be mapped into the isotropic HOs
via the canonical transformation. Although the isotropic HOs
with SU(2) coupling interactions have been verified to be a
striking analytical model, the quantum states of canonically
mapped commensurate HOs with SU(2) coupling interactions
have not been thoroughly explored yet.

In this work we start from a coupled p : q commensurate
HO with canonical transformation to develop a quantum
mechanical model with SU(2) coupling interactions. We
explore the eigenstates and find that the high-order spatial
patterns are noticeably concentrated on Lissajous figures from
single to multiple periodic orbits. In an earlier work [12], the
three-dimensional (3D) coherent lasing modes with transverse
patterns corresponding to single Lissajous figures have been
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methodically generated in degenerate cavities with a large
off-axis tightly focused pumping scheme. Here we intriguingly
verified that the 3D coherent lasing waves can be manipulated
to form more intricate transverse patterns corresponding to
multiple Lissajous orbits as found in the quantum eigenstates
of the developed model. The number of Lissajous orbits in
the lasing transverse pattern is experimentally confirmed to
be proportional to the pumping spot size. More importantly,
the role of the phase factor introduced by the SU(2) coupling
interactions can be nicely manifested from the propagating
property of the lasing modes. We expect that the findings of
controlling lasing transverse modes with spatial patterns to be
related to quantum states could open new attractive issues in
quantum physics and optical pattern formations.

II. THEORETICAL MODEL

The general form of a p : q two-dimensional (2D) com-
mensurate anisotropic HO comprising a weak coupling term
can be modeled as

Ĥ = Ĥ0 + Ĥc, (1)

where Ĥc signifies the coupling characterized by a vibration-
rotational mechanism and the detail will be provided later.
With dimensionless spatial operators x̂ and ŷ, the Hamiltonian
of the p:q commensurate anisotropic HO Ĥ0 can be given
as [29]

Ĥ0 = 1
2

(
p̂2

x + p̂2
y + ω2

1x̂
2 + ω2

2ŷ
2
)
, (2)

where ω1 = qω and ω2 = pω, ω is a common factor of the
oscillation frequencies ω1 and ω2, and q and p are integers. In
terms of the ladder operators, the Hamiltonian (2) becomes

Ĥ0 = ω′
[

1

p

(
â
†
1â1 + 1

2

)
+ 1

q

(
â
†
2â2 + 1

2

)]
, (3)

where ω′ = ωpq, â1 = (qωx̂ + ip̂x)/
√

2qω, â2 = (pωy +
ip̂y)/

√
2pω, â

†
1 = (qωx̂ − ip̂x)/

√
2qω, and â

†
2 = (pωŷ −

ip̂y)/
√

2pω. The eigenstates of the commensurate anisotropic
HO in Eq. (3) are |n1 p + λ1,n2 q + λ2〉Ĥ0

as has been shown
by Louck et al. [29], where (n1 , n2) are arbitrary non-negative
integers, and (λ1 , λ2) are constants that λ1 = 0,1, . . . ,

p − 1 and λ2 = 0,1, . . . ,q − 1. The normalized spatial
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representation is the well-known Hermite-Gaussian states [32]

〈x,y|n1p + λ1,n2q + λ2〉Ĥ0

= [2n1p+n2q+λ1+λ2 (n1p + λ1)!(n2q + λ2)!π]−1/2

× e−(x2+y2)/2Hn1p+λ1 (x)Hn2 q+λ2 (y), (4)

where Hn(·) is the Hermite polynomial of order n. It reveals
the fact that the eigenstates have been divided into pq different
subsets of states and the degeneracy holds when n1 + n2 is a
constant N for fixed (λ1,λ2) corresponding to the eigenvalues
E = ω′[(n1 + n2) + 1/2p+1/2q+λ1/p + λ2/q] of Eq. (3).
For a particular case (p,q) = (1,1) of the isotropic HO, it is
evident that Eq. (3) implies Ĥ0 = ω′[2Ĵ + 1], where Ĵ is the
Casmir operator associated with the SU(2) Lie algebra and the
corresponding generators derived by Schwinger [32] are

Ĵ1 = (â†
1â2 + â

†
2â 1)/2, Ĵ2 = (â†

1â2 − â
†
2â1)/2i,

(5)
Ĵ3 = (â†

1â1 − â
†
2â2)/2.

The operators Ĵi follow the angular momentum commuta-
tion relation [Ĵi ,Ĵj ] = ih̄εijkĴk [32], where the Levi-Civita
tensor εijk equals + 1 ( − 1) if (i,j,k) is an even (odd)
permutation, and zero otherwise.

With the nonbijective canonical transformation, the com-
mensurate anisotropic HO can be mapped onto an isotropic
one in a degenerate eigenspace [29]. The mapping suggests
Schwinger’s development of SU(2) symmetry represented by
the canonically transformed ladder operators and leads to the
analytical solutions to the Hamiltonian in Eq. (3). Therefore,
under the canonical transformation, the Hamiltonian in Eq. (3)
can be transformed into

Ĥ0 = ω′[(ã†
1ã1 + 1

2

) + (
ã
†
2ã2 + 1

2

)]
, (6)

where ãi and ã
†
i (i = 1,2) are the canonically transformed

ladder operators which bear the relations [29]

ã
†
i =

√
1

ξi

(n̂i − λi)[n̂i(n̂i − 1) · · · (n̂i − ξi + 1)]−1/2(â†
i )ξi ,

(7)

ãi =
√

1

ξi

(n̂i − λi)[n̂i(n̂i − 1) · · · (n̂i − ξi + 1)]−1/2(âi)
ξi ,

with number operator n̂i = â
†
i âi and (ξ1,ξ2) = (p,q). The

operation of the ladder operators on particular eigenstates for
fixed (λ1,λ2), for instance, are ã

†
1|n1p + λ1,n2q + λ2〉Ĥ0

=√
n1 + 1|(n1 + 1)p + λ1,n2q + λ2〉Ĥ0

and ã1|n1p + λ1,

n2q + λ2〉Ĥ0
= √

n1|(n1 − 1)p + λ1,n2q + λ2〉Ĥ0
. Obviously,

Eq. (6) is converted into the same form as the isotropic HO
when the degeneracy can exist for n 1 + n 2 = N according to
the eigenvalue E = ω′(n1 + n2 + 1) to the Hamiltonian Ĥ .
The generators of the SU(2) symmetry group can be rewritten
in a way that makes them the generators responsible for the
anisotropic HO under consideration:

J̃1 = (ã†
1ã2 + ã

†
2ã1)/2, J̃2 = (ã†

1ã2 − ã
†
2ã1)/2i,

(8)
J̃3 = (ã†

1ã1 − ã
†
2ã2)/2.

The operators also satisfy the Lie commutation relation.
Particularly, J̃1 = Ĵ1, J̃2 = Ĵ2, and J̃3 = Ĵ3 for the special
case of the isotropic HO with (p,q) = (1,1).

Let us now return to our formal considerations of the
coupled anisotropic HO of the Hamiltonian given in Eq. (1).
The coupling term Ĥc is introduced as an SU(2) coupling
interaction [27,28], which can be modeled as

Ĥ = Ĥ0 + Ĥc = Ĥ0 + (AJ̃1 + BJ̃2 + CJ̃3), (9)

where A, B, and C are constants indicating the coupling
parameters with the assumption A, B, and C� ω′ for weak
coupling. We would like to remark that, in view of the
case (p,q) = (1 , 1) for the coupled isotropic HO, the wave
functions have been demonstrated previously on a group
theory level via the SU(2) transformation [28,31]. Likewise,
it enables us to derive the wave functions by employing the
transformation of the SU(2) symmetry group.

Now consider our problem of the Hamiltonian in Eq. (9);
that is, find the eigenstates to the commensurate coupled
HO. Under the SU(2) transformation, the eigenstates to the
Hamiltonian in Eq. (9) can be given as

|n1p + λ1,n2q + λ2〉Ĥ
= Û |n1p + λ1,n2q + λ2〉Ĥ0

= e−iαJ̃3e−iβJ̃2 |n1p + λ1,n2q + λ2〉Ĥ0
, (10)

where Û = e−iαJ̃3e−iβJ̃2 is the unitary operator, α =
− tan−1(B/A), and β = − tan−1(

√
A2 + B2/C). The Hamil-

tonian Ĥ can be diagonalized into Ĥ ′ = Û−1Ĥ Û =
Ĥ0 + √

A2 + B2 + C2J̃3. Therefore, with the operation
on eigenstates |n1p + λ1,n2q + λ2〉Ĥ0

, eigenvalues to Ĥ

can be directly achieved as E′ = ω′(n1 + n2 + 1) +√
A2 + B2 + C2(n1 − n2)/2, where nearly degenerate occurs

for n1 + n2 = N , where N is a constant. Consequently, the
eigenstates to the Hamiltonian Ĥ can be obtained in terms of
the Wigner d coefficient [33]:

|n1p + λ1,n2q + λ2〉Ĥ = eiNα/2

(
N∑

m1=0

e−im1αd
N/2
m1−N/2,n1−N/2(β)|m1p + λ1,m2q + λ2〉Ĥ0

)
, (11)

where

d
N/2
m1−N/2,n1−N/2(β) =

√
m1!(N − m1)!n1!(N − n1)!

min[N−n1,m1]∑
ν=max[0,m1−n1]

(−1)ν[cos(β/2)]n1+m1−2ν[sin(β/2)]n2−m1+2ν

v!(N − n1 − v)!(m1 − v)!(n1 − m1 + v)!
, (12)
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FIG. 1. (Color online) (a1)–(a4) Numerical simulations of Wigner d coefficient |dN/2
m1−N/2,n1−N/2(β)|2 with respect to m1 for various n1.

(b1)–(d4) Numerical wave patterns for the intensities of eigenstates |n1p + λ1,n2q + λ2〉Ĥ . See text for a detailed description of the parameters.

and m 1 + m 2 = N . Evidently, eigenstates |n1p + λ1,

n2q + λ2〉Ĥ can be expressed as a linear superposition
of the set of |m1p + λ1,m2q + λ2〉Ĥ0

. Figures 1(a1)–
1(a4) show distributions of the Wigner d coefficient
|dN/2

m1−N/2,n1−N/2(β)|2 with respect to m1 for n1 = 0−3,
n1 + n2 = N , N = 60, and β = π/2, which reveal the
composition of |n1p + λ1,n2q + λ2〉Ĥ with eigenstates
|m1p + λ1,m2q + λ2〉Ĥ0

of different orders. Figures 1(b1)–
1(b4), 1(c1)–1(c4), and 1(d1)–1(d4) illustrate the corre-
sponding eigenstates |n1p + λ1,n2q + λ2〉Ĥ with (p,q) =
(2,1), (p,q) = (3,1), and (p,q) = (3,2), respectively, and
all with (λ1,λ2) = (0,0), (α,β) = (π/2,π/2), n1 + n2 = N ,
and N = 60.

Note that it is valid for us to choose a specific eigenspace of
(λ1,λ2) = (0,0) since, in the classical limit (N large enough),
[34] has confirmed that the choice of the eigenspace does
not affect the final results. Therefore, parameters (λ1,λ2) are
set to be (0,0) in the following discussions. Moreover, (α, β)
are chosen for specific parameters. α signifies an additional
phase shift between the two HOs in x and y directions, and
β corresponds to the coupling strength arising from Ĥc. The

distribution |dN/2
m 1−N/2, n1−N/2(β)|2 shown in Figs. 2(a1)–2(a8)

are varied with β, which indicates different composition of
the corresponding eigenstates |n1p,n2q〉Ĥ as that depicted in
Figs. 2(b1)–2(b8) with (p,q) = (2,1), α = π/2, n1 = 1, and
N = 60. For β = 0 and β = π , the eigenstates can be seen to
project precisely onto particular eigenstates |p,q(N − 1)〉Ĥ0

and |p(N − 1),q〉Ĥ0
, respectively. While β is determined, the

conversion of α can be illustrated as shown in Figs. 3(a1)–3(a5)
with n1 = 1, β = 0.4π , and N = 60, and in Figs. 3(b1)–3(b5)
with n1 = 3, β = 0.74π , and N = 60. The morphologies
transform since different relative phases are introduced into
the superposition of states |n1p,n2q〉Ĥ with the set of states
|m1p,m2q〉Ĥ0

.
Theoretical results disclose intriguing geometric patterns

localized on an ensemble of periodic Lissajous orbits, which
suggests a kind of quantum-classical analog. It is evidenced
that the number of peaks of |dN/2

m1−N/2, n1−N/2(β)|2 is consistent
with the number of Lissajous orbits of |n1p,n2q〉Ĥ for various
n 1. This fact implies that each orbit of the multi-Lissajous
patterns is formed by the superposition of a particular group
of the set |m1p,m2q〉Ĥ0

with distribution centered on the
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FIG. 2. (Color online) (a1)–(a8) Numerical simulations of Wigner d coefficient |dN/2
m1−N/2,n1−N/2(β)|2 with respect to m1 for various β.

(b1)–(b8) Corresponding numerical wave patterns for the intensities of eigenstates |n1p,n2q〉Ĥ .

corresponding peak of |dN/2
m1−N/2,n1−N/2(β)|2. A relation l =

min(n1,n2) + 1 can be given, where l denotes the number of

orbits. While the magnitude of min(n1,n2) becomes larger,
the related excited states display more complex causticlike
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0 0.18 0.25 0.35 0.5

FIG. 3. Numerical wave patterns for the intensities of eigenstates |n1p,n2q〉Ĥ with respect to varyingα. (a1)–(a5) β = 0.4 π . (b1)–(b5)
β = 0.74 π .
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FIG. 4. Numerical wave patterns for higher indices n1 followed by the case in Figs. 1(b1)–1(b4).

geometric patterns as shown in Fig. 4, followed by the case in
Figs. 1(b1) and 1(b2). Additionally, the symmetry is held for
(n1,n2) ⇔ (n2,n1), e.g., eigenstates of (n1,n2) = (26,34) and
(n1,n2) = (34,26) shown in Figs. 4(f) and 4(h) possess identi-
cal morphology for equal distribution |dN/2

m1−N/2,n1−N/2(β)|2.
Though the same morphology is notified, the eigenstates
(n1,n2) and (n2,n1) are characterized by distinct features of the
quantum probability current ⇀

J , where ⇀
J (x,y) = Im(�∗⇀∇�)

[33] and �n1p,n2q(x,y) = 〈x,y|n1p,n2q〉Ĥ . Taking the cases of
(n1,n2) = (1,59) and (n1,n2) = (59,1) as an example, it can
be seen that the probability current ⇀

J (x,y) flows in counter
directions for the two states as depicted in Figs. 5(b) and
5(c). Note that the vector field ⇀

J (x,y) has been normalized to
⇀
J (x,y)/|⇀J (x,y)| for observing the detailed structures, and the
constants h̄ and particle mass are set to be unity.

Figure 6 further displays the phase structures for the case in
Figs. 4(a) and 4(e). The enlarged figures of the box region in
Figs. 6(a2) and 6(b2) are presented, respectively, in Figs. 6(a3)

and 6(b3), where the complicated phase distribution indicates
promising development in quantum physics such as quantum
entanglement and quantum information as long as the quantum
states |n1p,n2q〉Ĥ can be accessibly prepared [35]. As we
will see in the following, the correlated optical modes can be
successfully generated in an astigmatic large-Fresnel-number
laser cavity [31]. The certification is based on the reconciliation
between the wave equation for laser transverse modes in the
paraxial approximation and the Schrödinger equation for the
2D quantum confined systems [10–12]. Most importantly,
Nienhuis et al. [10] has clarified high correlation between the
quantum operator algebra and manipulation in the laser cavity.
Consequently, based on the acts of the quantum operators
e−iαJ̃3e−iβJ̃2 in Eq. (10), we are able to generate the analogous
wave patterns by the correlated operation in a laser resonator.
The presented research will not be restricted to the theoretical
viewpoint of quantum physics and, intriguingly, practical
correspondence will be explicitly provided with optical waves.

a cb

1 2, 1, 59n n 59,1

FIG. 5. (Color online) (a) Numerical wave patterns for the intensities of eigenstates |n1p,n2q〉Ĥ for (n1,n2) = (1,59) and (n1,n2) = (59,1);
probability current ⇀

J (x,y) for (b) (n1,n2) = (1,59) and (c) (n1,n2) = (59,1).
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FIG. 6. (Color online) (a1),(b1) Theoretical results in Figs. 4(a) and 4(e). (a2),(b2) Phase distribution of (a1) and (b1), respectively. (a3),
(b3) Enlarged figures of the box region in (a2) and (b3), respectively.

III. ANALOGOUS OBSERVATION IN LASER
TRANSVERSE MODES

The experiment mainly consists of a laser resonator, a
pumping source, and an imaging system as shown in Fig. 7(a).
The laser resonator is composed of a spherical mirror and
a large-aperture gain medium. The gain medium is an a-cut
2.0-at. % Nd:YVO4 crystal with a length of 2 mm and a 10 ×
10 mm2 cross section. Two sides of the crystals are coated
for high reflection and antireflection, respectively, at 1064 nm.
The radius of curvature of the spherical mirror is R = 10 mm

and its reflectivity is 99.7% at 1064 nm. The pump source is
a 3 W 808 nm fiber-coupled laser diode with a pump core
of 100 μm in radius. A focusing lens with a focal length of
20 mm and 90% coupling efficiency is employed to reimage
the pump beam into the crystal.

The length of the present resonator can be set to form
various degenerate cavities in which a resonance frequency
with a high-order transverse mode is equal to another reso-
nance frequency with fundamental transverse modes [36]. It
has been found [12,31] that the lasing modes in degenerate

cb d e

Cavity mirror
Gain

medium

Screen

CCD camera

a

Focusing lens

FIG. 7. (Color online) (a) Experimental setup for the generation of laser modes with large off-axis defocusing pumping. (b)–(e) Experimental
far-field patterns corresponded to the numerical results in Figs. 1(b1)–1(b4).
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0z L 0.12z L 0.15z L 0.22z L 0.35z L

FIG. 8. (Color online) Experimental tomographic transverse patterns observed along the propagation direction from the beam waist.
(a1)–(a5) (�x,�y) = (0.21 mm,0.10 mm). (b1)–(b5) (�x,�y) = (0.57 mm,0.10 mm).

cavities with a large off-axis tightly focused pumping spot of
∼25 μm are usually dominated by the 3D coherent waves
with transverse patterns corresponding to single Lissajous
figures. In this work we systematically find that the 3D
coherent lasing waves can be manipulated by enlarging the
pumping spot size to form more intricate transverse patterns
corresponding to multiple Lissajous orbits as shown in the
quantum eigenstates of the developed model. Figures 7(b)–7(c)
depict the experimental observations for the cavity length L

of 7.5 mm with the pumping size ∼50–100 μm. It can be
seen that the experimental observations agree very well with
the numerical results in Figs. 1(b1)–1(b4), which is associated
with our theoretical analysis that groups of eigenstates can
be excited simultaneously to compose the corresponding
Lissajous patterns. Note that the indices (p,q) are determined
from the cavity length L and the degenerate conditions [12].
We verify that the number of Lissajous orbits in the lasing
transverse pattern is governed by the spot size of the pumping
beam. The larger the pumping size, the greater the number of
Lissajous orbits that can be effectively excited.

In the preceding section, we demonstrated the effect of the
parameter β which signifies the degree of coupling mechanism
and governs the distribution of the states |m1p,m2q〉Ĥ0

employed in the superposition of eigenstates |n1p,n2q〉Ĥ . In
a laser resonator, the influence of β corresponds fairly to the
amount of astigmatism arising from the off-axis pumping.
While β is chosen, the parameter α can be realized as the
Gouy phase shift [12,37], which differs along the propagation
direction for Gaussian beams. As shown in Fig. 8, transverse
patterns of different positions along the propagation direction
are visibly consistent with the theoretical results in Fig. 3
for the evolution of HOs. Obviously, a three-dimensional
evolutional parametric surface can be exploited to interpret
the transformation of the spatial patterns inside the cavity.
The same clarification for single periodic Lissajous figures
had been primarily provided [12] to show noticeable
localization on the 3D parametric surface by observing the
tomographic transverse patterns inside the cavities. Note
that Figs. 8(a1)–8(a5), and Figs. 8(b1)–8(b5) are generated
with off-axis pumping (�x,�y) = (0.21 mm, 0.10 mm), and

1a 1c1b 1d

, 3 , 2p q 3 ,1 4 , 3 5 ,2
a cb d

FIG. 9. (Color online) (a)–(d) Numerical wave patterns for the intensities of |n1p,n2q〉Ĥ with different (p,q). (a1)–(d1) Experimental
results corresponded to the theoretical analysis. See the text for a detailed description of the parameters.
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FIG. 10. (Color online) (a1)–(a5) Numerical wave patterns for the intensities of |n1p,n2q〉Ĥ with (p,q) = (3,2) and varying α. (b1)–(b5)
Experimental tomographic transverse patterns observed along the propagation direction from the beam waist for (p,q) = (3,2).

(�x,�y) = (0.57 mm, 0.10 mm), where (�x,�y) are
measured relative to the optical axis of the laser cavity and an
objective lens is employed to reimage the near-field patterns
on the screen.

In Figs. 9(a1)–9(d1), experimental observation of different
(p,q) are displayed corresponding to numerical calculations
of |n1p,n2q〉Ĥ , where (p,q) = (3,2), (α,β) = (π/2,π/2) for
Fig. 9(a), (p,q) = (3,1), (α,β) = (π/2,π/2) for Fig. 9(b),
(α,β) = (0,π/2), (p,q) = (4,3) for Fig. 9(c), and (α,β) =
(π/2,π/2), (p,q) = (5,2) for Fig. 9(d), and all with n1 = 1,
and N = 60. Experimental results of the patterns (p,q) =
(3,2), (p,q) = (3,1), (p,q) = (4,3), and (p,q) = (5,2), are
observed at L = 9.0 mm, L = 4.9 mm, L = 6.1 mm,
and L = 7.4 mm, respectively. In Figs. 10(a1)–10(a5),
the transverse patterns along the propagation direction of
(p,q) = (3,2) in Fig. 9(a1) are reconstructed agreeably, as
depicted in Figs. 10(a1)–10(a5) for varying α. This agreement
suggests that our quantum operator model of the coupled
commensurate HO is applicable to the ubiquitous laser
modes.

IV. CONCLUSION

In summary, we have systematically investigated the quan-
tum signatures of the eigenstates corresponding to the coupled
commensurate HO with SU(2) coupling interactions. Further-
more, we have explored the analogous observation of the
laser transverse modes from large-Fresnel-number degenerate
cavities via varying pumping size. It has been experimentally
verified that the 3D coherent lasing waves corresponding
to the quantum states with multiple Lissajous orbits can be
systematically generated by enlarging the pumping spot size.
Finally, we employ the propagating property of the lasing
modes to manifest the role of the phase factor introduced by
the SU(2) coupling interactions.
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(1946).

[8] D. Gloge and D. Marcuse, J. Opt. Soc. Am. A 59, 1629 (1969).
[9] R. Fedele, M. A. Man’ko, V. I. Man’ko, and V. G. Vaccaro, Phys.

Scr. 68, 377 (2003).
[10] G. Nienhuis and L. Allen, Phys. Rev. A 48, 656 (1993).
[11] N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and

A. D. Stone, Phys. Rev. Lett. 88, 094102 (2002).
[12] Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, Phys. Rev. Lett.

96, 213902 (2006).
[13] K. F. Huang, Y. F. Chen, H. C. Lai, and Y. P. Lan, Phys. Rev.

Lett. 89, 224102 (2002).
[14] T. Gensty, K. Becker, I. Fischer, W. Elsäßer, C. Degen, P.
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